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Climate affects habitat, food availability, and the movement and 
sustainability of all life. In this work, we apply Indigenous and 
Western scientific methods, including genomics and isotope 
profiling, on fossils from across Beringia to explore the effect of 
climate change on horses. We find that Late Pleistocene horses 
from Alaska and northern Yukon are related to populations from 
Eurasia and crossed the Bering land bridge multiple times 
during the last glacial interval. We also find deeply divergent 
lineages north and south of the American ice sheets that 
genetically influenced populations across Beringia and into 
Eurasia. As climate warmed and horses entered the ice- free 
corridor connecting Beringia and midcontinental America, 
restricted mobility and food availability impeded population 
growth. Our combined Western and Indigenous framework 
offers critical guidance for wildlife conservation amid ongoing 
climate change.

Many Indigenous scientific systems are premised on the knowledge 
that all life is in constant motion (1), moving and adapting as climate 
shifts (2). Megafauna (animals that are >45 kg) fill keystone roles in 
ecosystems, shaping biodiversity (3) and safeguarding carbon stocks 
in soils and vegetation (4). Their decline can trigger cascading effects on 
ecosystem function, habitats, and people (5, 6). This is especially acute 
in the Arctic, which is warming considerably faster compared with other 
ecosystems (7, 8). Understanding the long- term interplay between 
megafaunal dynamics and climate change is urgently needed to aid 
conservation and ecosystem restoration in the Artic and beyond (9).

Indigenous science has accumulated invaluable knowledge on habi-
tat change and its effects on the movement of peoples, megafauna, 

and other life forms (10, 11). The fossil record—with its deep temporal 
archive of responses to changing environments—also provides insights 
into the relationship between climate and megafaunal dynamics 
(12–14). For example, Pleistocene fossils of Beringia, the unglaciated 
landmass that connected present- day Yukon, Alaska, and northeastern 
Asia across the exposed Bering land bridge (Fig. 1A), reveals notably 
shifting patterns of habitat availability concurrent with climate swings. 
During the last cold period [35 to 16 thousand years before the present 
(kyr B.P.)], lower sea levels allowed dispersal into and out of North 
America via the exposed land bridge, although ice sheets limited move-
ment southward into lower American latitudes (15). As the climate 
warmed (16 to 10 kyr B.P.), ice sheet melting opened the ice- free cor-
ridor to midcontinental America (16) and submerged the land bridge, 
forming the Bering Strait (17), which remains a barrier to the dispersal 
of terrestrial species [although examples of human- mediated ex-
changes seasonally and by sea are abundant in Iñupiaq and Dene’ 
(Athabascan) oral traditions]. These changes altered habitat avail-
ability, connectivity, and food resources as cryoxeric steppe- tundra 
fragmented into boggy tundra, shrublands, wetlands, and boreal for-
ests (18), which are less favorable habitats for some megafaunal 
species (19).

Despite substantial habitat changes in Beringia during Pleistocene 
climate cycles, the effects on megafaunal populations remain elusive 
(13, 14). In this work, we combine geochemical and genomic analyses 
of horse fossils with traditional science to track changing habitats, 
population dynamics, and dispersal in Beringia from ~13 to >50 kyr 
B.P. Pleistocene horses offer a model to explore climate effects on 
megafauna, particularly in Beringia (20–22), where the Equus fossil 
record is exceptional (23). The Horse Nation and its movement and 
evolution are sacred to many Indigenous knowledge keepers in the 
Americas (1). Following the movement and evolution of the horse to 
reveal traditional knowledge fully aligns with many Indigenous scien-
tific protocols. We thus integrate the biological signatures identified 
with Indigenous knowledge regarding ecosystem balance and sustain-
ability to highlight the importance of corridors in safeguarding life.

Genomic, radiocarbon, and isotopic datasets
We applied Western and Lakota protocols to generate genomic data 
from 67 fossils originating in Beringia, Siberia, and continental North 
America (Fig. 1, A and B; fig. S1; and table S1). These data, which 
showed expected signatures of postmortem DNA damage (figs. S2 and 
S3) and limited error rates at transversion sites (fig. S4 and table S1), 
were compared with 158 genomes representing all known horse lin-
eages (24–26) plus two donkeys (table S1). Additionally, we integrated 
genomic data with 200 radiocarbon dates and stable carbon and nitrogen 
isotope measurements (δ13C and δ15N) from fossil horse collagen. To 
extend reconstruction of environmental conditions, dietary behavior, 
and habitats across the Northern Hemisphere, we prepared a database of 
3809 δ13C and δ15N data from radiocarbon- dated Late Pleistocene megafauna 
(table S2). Combined, these data tracked habitat, diet, and genetic 
diversity changes across Beringia and beyond from ~13 to >50 kyr B.P.

Horses crossed Beringia multiple times
Phylogenetic analyses of mitochondrial and Y chromosome DNA sug-
gest that horses crossed the Bering land bridge in both directions 
during the Pleistocene. Most horse fossils from North America cluster 
into two distinct major clades (Fig. 1C and figs. S5 and S6). The first 
ranged from south of the continental ice sheets (present- day US lower 
48 states) to easternmost East Beringia via the ice- free corridor. Fossils 
from eastern Eurasia, including Equus dalianensis specimens from 
China (27) and South- East Russia near Vladivostok, appear sister to 
this clade at the mitochondrial level (Fig. 1C). Because Equus origi-
nated in North America (28), this phylogenetic structure supports 
dispersal into Eurasia beyond the limits of radiocarbon dating 
(i.e., >50 kyr B.P.). The second clade includes individuals from the 
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most western and northern extent of East Beringia (Fig. 1C and figs. 
S5 and S6) and clusters within broader Eurasian diversity, with closest 
relatives in northeastern Siberia, which supports migration back into 
America >46.8 kyr B.P.

Dispersals from Eurasia into North America
Analyses of genome- wide autosomal variation identified two major 
horse genetic lineages in North America. Principal components analy-
sis (PCA) (Fig. 2A and figs. S7 to S9) and f3- outgroup statistics (fig. 
S10) showed strong differentiation between one cluster of specimens 
spanning easternmost East Beringia, the ice- free corridor, and south 
of the continental ice sheets, and a second cluster comprising the 
remaining American and Eurasian lineages. Within the latter, PC2 
revealed a genetic cline stretching longitudinally from the Ural 
Mountains (≥15.4 kyr B.P.) to Alaska and northwestern Yukon (Fig. 2B) 
[Pearson correlation, adjusted coefficient of determination (R2) = 0.941, 
P < 2.2 × 10−16]. Longitude was also correlated with the ADMIXTURE 
(29) component maximized in Alaskan individuals (adjusted R2 = 
0.949, P < 2.2 × 10−16) (fig. S11), all of which belonged to a highly sup-
ported monophyletic group, deriving from a larger Siberian cluster 
(Fig. 3, A and B, and fig. S12). These results support isolation- by- 
distance east of the Ural Mountains and across the Arctic into 
North America.

Temporal branching patterns within Alaskan and northwestern 
Yukon individuals support multiple dispersals across the Bering land 
bridge. Whereas a single dispersal event would produce a temporally 
sorted phylogenetic clade, no clear time structure emerged within 
Alaska (Fig. 3A), with the two most recent specimens (AV089 and 
AV096) branching off first. Their basal position is not a result of 
admixture with a divergent lineage because D- statistics and F4 ratio 
calculation (30) indicated significantly less genetic sharedness with 
the geographically closest, most divergent population from East 
Beringia versus with the other individuals from Alaska or northwest-
ern Yukon (Fig. 3D and fig. S14). These results, alongside radiocarbon 
dating, support multiple independent dispersal events into North 
America from genetically close Siberian sources followed by limited 
genetic admixture (F4 ratios, 0.5 ± 0.3% to 6.1 ± 0.6%) with the other 
main American lineage.

Dispersals from North America into Eurasia
Several individuals deviated from the genetic cline linking the Eurasian 
and American Arctic (Fig. 2B and fig. S11). These included three 
>50–kyr B.P. specimens from northeastern Siberia (PH156, PH172, and 
R17x2), one ~23.6–kyr B.P. specimen from southwestern Siberia 
(Rus45), and two E. dalianensis specimens from more southerly lati-
tudes (Fig. 1 and fig. S1). The latter showed ancestry from the lineage 
spanning easternmost East Beringia, the ice- free corridor, and south 
of the continental ice sheets, as revealed by ADMIXTURE (29) (1.3 ± 
0.3% to 1.7 ± 0.2%; fig. S12 and table S1) and Struct- f4 (31) analyses 

(3.0 ± 0.3% to 3.6 ± 0.2%) (Fig. 3, B and C; fig. S14; and table S1). 
Similar ancestry was identified among the >50–kyr B.P. outliers from 
northeastern Siberia (0.8 to 1.7%), Rus45 (1.3%), and some Holocene 
(~3.9 to 4.7 kyr B.P.) remains from Iberia (2.3 to 4.2%; fig. S13 and table 
S1). F4 ratio analysis found 0.6 ± 0.2% to 0.7 ± 0.2% of such ancestry 
in two northeastern Siberian specimens dated to ~20.4 (PH147) and 
~36.6 kyr B.P. (PH159) (Fig. 3D and table S1). Combined, these analyses 
support genetic contribution of North American horses to Eurasia 
before ~20.4 kyr B.P., extending from northeastern Siberia southward 
to the Russian Far East (E. dalianensis) and west to Iberia.

Understanding the frequency and limits of American horse dispersal 
across the Bering land bridge requires extensive genetic surveys of 
Pleistocene eastern Eurasia. Our findings reveal genetic exchanges 
across Beringia and well into Eurasia. This aligns with the movement 
patterns described within the sciences of the Iñupiaq and Dene’ 
(Athabascan) (2) and with the Lakota and Syilx understanding of the 
evolution of their Peoples and the Horse Nation. Current labeling prac-
tices of Beringian fossils, influenced by geography and historical bias, 
overlook the dynamic history of species movement and reduce the 
multidimensionality of life forms. They ignore the Lakota mitakuye 
oyasin concept, which emphasizes “the relationality between life 
forms”—i.e., the interdependence between organisms, including mi-
crobes. We believe that the reliance on contemporary geographical 
labels, although convenient to Western paleontologists, has hindered 
constructive dialogs with Indigenous scientists.

Opening of the ice- free corridor
Beringia served as a dispersal corridor between Siberia and America 
until rising sea levels reformed the Bering Strait ~11 to 13 kyr B.P. (17). 
Meanwhile, the Laurentide and Cordilleran ice sheets coalesced from 
~25 kyr B.P., depopulating Alberta until the ice- free corridor reopened 
~13.8 ± 0.5 kyr B.P. (16) (Fig. 1B). The 19 horses analyzed from the 
Edmonton area, Alberta, lived ~13.1 kyr B.P., immediately after degla-
ciation (Fig. 1A and table S1). Although phylogenetically close, these 
horses diverged before the divergence of populations in easternmost 
East Beringia and those south of the continental ice sheets (Fig. 3A), 
which indicates that the ice- free corridor population did not emerge 
from either group expanding into the region.

To characterize the genetic source or sources entering the ice- free 
corridor, we performed population graph modeling with AdmixtureBayes 
(32) and OrientAGraph (33), considering key lineages in and around 
Beringia (Fig. 4 and figs. S15 and S16). These analyses confirmed the 
deep phylogenetic split within America between Alaska and/or north-
western Yukon and other regions, with the former receiving a minor 
genetic contribution from a source related to easternmost East 
Beringia (AdmixtureBayes, 3.0%; OrientAGraph, 2.5%). The genetic 
affinities linking the Ural Mountains to East Beringia, as well as the 
early divergence of the outlier northeastern Siberian and E. daliensis 
lineages, were also validated.
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Graph models could not clearly resolve the history of the ice- free 
corridor population. AdmixtureBayes indicated early divergence (Fig. 
4, A and B), whereas OrientAGraph grouped this population with east-
ernmost East Beringia (Fig. 4C), suggesting that the ice- free corridor 
was primarily populated from north of the ice sheets. Both models 
showed significant contributions from deeply divergent groups—south 

of the continental ice sheets in AdmixtureBayes (5.0%) and easternmost 
East Beringia and the ice- free corridor in OrientAGraph (5.0% and 
20.2%, respectively). This reflects a complex history of isolation and 
admixture during the earliest evolutionary stages, which remains 
unresolved without population- scale data from the deeper evolutionary 
past of America.

Fig. 1. Samples and mitochondrial phylogeny. (A) Sample location, with Last Glacial Maximum (LGM) geographic and climate features. LGM elevation and ocean extent were 
obtained by adding 130 m to the GEBCO 2014 bathymetric model (v20150318, http://www.gebco.net). LGM ice- sheet extent and permafrost are from Dalton et al. (43) and 
Lindgren et al. (50), respectively. Large, white- filled symbols indicate samples sequenced in this study, whereas small, open symbols indicate samples sequenced in previous studies. 
The colors of symbols reflect their main clusters of genetic affinities (table S1). (B) Inset zoom on Beringia and North America ~13 kyr B.P., showing key geographic features 
discussed in the main text. (C) Maximum likelihood (ML) tree for mitochondrial DNA manually rooted using a donkey outgroup, not shown (N = 16,420 base pairs, GTR+F+R10). 
Node supports (percentages) are displayed when greater than 80%, as estimated from 1000 replicates and ultrafast bootstrap approximation.
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Demographic modeling using GONE (34) revealed a brief popula-
tion bottleneck (2.3- fold) 104 to 91 generations before ~13.1 kyr B.P. 
(~13,761 to 13,858 yr B.P.), aligning with the ice- free corridor open-
ing (13.8 ± 0.5 kyr B.P.) (16) (Fig. 5A). We interpret this as the founder 
event of the ice- free corridor population, which maintained low 

effective sizes for 39 generations [91 to 52 generations; effective popu-
lation size (Ne) = 2607] and collapsed further over 32 generations (52 
to 20; Ne = 617) with no subsequent recovery (Ne = 842). These find-
ings suggest that the ice- free corridor could not support substantial 
population growth at the time.
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Fig. 2. Population structure. (A) PCA with percentages reflecting the variance proportions explained by PC1 and PC2. The AUTOSHRINK mode was applied, and a total of eight samples 
were projected on the PC space defined by the remaining samples. PC1 is reversed to mirror the geographic position of Eurasia and America in Fig. 1, A and B. Labels indicate the main 
lineages, except for a few notable samples. Newly sequenced samples are highlighted with larger sizes. (B) Linear regression of PC2 against longitude. The fitted Pearson linear 
regression model is shown with a blue line, with standard errors in gray. The labeled samples, including E- NESib*, E- SERus, and Rus45 individuals, were not included in the model 
because they are from different genetic backgrounds. Longitude was transformed by adding 360° when inferior to −30° to place the American continent in continuity with Eurasia.
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To explore the interplay between climate, habitat, and demography, 
we analyzed δ13C and δ15N values in megafaunal bone collagen from 
high latitudes (table S2) as proxies for diet, soil moisture conditions, 
habitat quality, and food availability (19). Ice- free corridor horses had 
extremely low δ15N values (Fig. 5B) but δ13C values typical of those of 
other Pleistocene horses (fig. S17), which indicates a consistent diet 
but exceptionally high soil moisture (19) associated with permafrost 
and glacial thaw (16). Replacement of cryoxeric steppe- tundra, which 

is ideal habitat for horses (35), by swampy tundra or forests reduced 
mobility, fragmented habitats, and limited food availability (19). 
Enamel hypoplasias indicate increased systemic stress—possibly nutri-
tion related—at this time in North American horse populations (36). 
Our demographic modeling shows that the reduced carrying capacity 
of this environment constrained horse expansion in the ice- free cor-
ridor (Fig. 5A). A drop in δ15N values occurred in other grazers between 
~15 and 13 kyr B.P. in East Beringia (Fig. 5B) and beyond (fig. S18), a 
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phenomenon known as the Late Glacial Nitrogen Excursion (19). Loss 
of cryoxeric steppe- tundra because of climate warming and the resulting 
demographic impacts explain the decline in horse and other mega-
faunal grazer fossils at the Pleistocene- Holocene transition (19).

Discussion
This study extends previous paleogenomic research (22, 25, 37–39) 
reporting an extensive diversity of late Pleistocene horse lineages that 
contrasts sharply with horse diversity today. Deeply divergent lineages 
in Eurasia and North America suggest strong geographic and environ-
mental barriers isolating populations during Pleistocene climate cycles 
(40). Despite this, multiple dispersals between continents occurred 
during favorable glacial conditions. The genetic cline linking the 
Eurasian Arctic and Alaska indicates that the cryoxeric steppe- tundra 
defining the “mammoth steppe” (41, 42) provided a favorable dispersal 
corridor ranging across the Bering land bridge. However, this trans-
continental cline barely extended into America, as northwestern 
Alaskan populations were predominantly Eurasian genetically (93.7 
to 99.5%), whereas northeastern Siberian populations had minimal 
eastern Beringian ancestry (≤0.8 ± 0.2%). Natural barriers, such as 
the Ahklun Mountains, Nulato Hills, and Brooks Range, considerably 
limited, but did not entirely prevent, horse dispersal between ~14.8 
and 46.2 kyr B.P. (43).

Northeastern Siberian horses from ~5.1 to >48.4 kyr B.P. largely 
lacked American ancestry, but earlier dispersal(s) from eastern 
Beringia left lasting genomic footprints in Eurasia, such as in the 
Russian Far East >50 kyr B.P. (E. dalianensis) and Holocene Iberia 
(Fig. 3C). Struct- f4 and population graph modeling placed these dis-
persals beyond the limits of radiocarbon dating, aligning with a diver-
gence of at least 285 kyr B.P. between Holocene Iberian and other 
Eurasian lineages (38). Horses near the Ural Mountains strongly in-
fluenced the genomic makeup of Eurasian horses: They group basally 
to most late Pleistocene and Holocene lineages in Anatolia, Central 
Asia, and Europe (Fig. 3A) and were part of a genetic cline connecting 
Arctic Eurasia and America. This lineage likely extended farther east 
than the Urals, as evidenced by the ~45.8–kyr B.P. Kr4x1 specimen 

from southwestern Siberia near Novosibirsk. Their range likely shifted 
with time and climate because their genetic sharedness with the 
~5.1–kyr B.P. Batagai sample from northeastern Siberia (39) was un-
precedented in older Siberian specimens (fig. S14).

Further east than Alaska and northwestern Yukon, populations 
north and south of the continental ice sheets formed distinct genetic 
subgroups, supporting the role of glacial- interglacial cycles in driving 
megafauna population dynamics (20, 44). Horses entered the ice- free 
corridor after the ice sheets retreated but did not expand, likely owing 
to unfavorable conditions. As permafrost thawed and glaciers re-
treated ~12 to 15 kyr B.P. (19), high soil moisture in deglaciated areas 
(indicated by δ15N data) hindered the formation of cryoxeric steppe- 
tundra crucial for horses. Moist environments replaced the mammoth 
steppe- tundra with swampy tundra and boreal forest dominated by 
woody, grazing- resistant plants (18, 19), which in turn resulted in re-
duced mobility (45) and demographic decline (46) of large grazers. By 
contrast, mixed feeders and browsers, such as wapiti and moose, 
thrived and expanded their ranges (19, 47, 48). These observations align 
with the Lakota mitakuye oyasin scientific principle (1), which defines a 
species’ habitat by its relationality with other life forms essential for its 
survival rather than by geography. As climate shifts affect the life forms 
that each species needs to thrive, their need to exist within their relational 
habitat serves as the driving force for movement or migration.

Permafrost is projected to largely disappear within a century (49), 
replicating conditions in Alberta ~13 kyr B.P. across much of the Arctic, 
with severe implications for life. The global loss of the circumpolar 
permafrost- tundra belt, creating environments less favorable to move-
ment, may also challenge de- extinction prospects for the megafauna 
grazers that roamed the high latitudes during the late Pleistocene (8).

Chief Harold Left Heron, a traditional scientist, Elder, and knowl-
edge keeper for the Lakota Peoples, offers the following perspective: 
“We understand individual bodies as balanced ecosystems hosting 
a diversity of life forms, including microbial, all aligned towards 
health. When survival becomes challenging, life forms whose rela-
tionality is being affected utilize ouŋye (most closely translated in 
English as ‘agency’) to reach out to other related but different forms 
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of life to preserve sustainability. Joining improves their ability not 
just to survive, but to thrive. This process is called yutaŋ’kil and it 
combines and diversifies life genetically to ensure an ebb and flow 
by adjusting and responding to changing conditions. As Lakota, we 
acknowledge this with each breath.” He further explains that re-
specting the inherent need for life forms to freely move within their 
optimal relational home provides the ideal conditions for sustain-
ability. Therefore, attempts to preserve megafauna species as they 
were genetically at one specific point in time disregards this com-
plex diversity of alliances with other life forms and is unlikely to 
strengthen sustainability. Conversely, ensuring the movement of life 

through physical corridors connecting a diversity 
of habitats allows life to adapt and survive in 
changing environmental conditions.

Wilson Justin is an Upper Ahtna/Upper Tanana 
Dene’ (Athabascan) Elder and knowledge keeper of 
the Alth’setnay clan, born at Nabesna, Alaska. 
Addressing the movement inherent in all life and 
the scope of his People’s world, he recalls a well- 
traveled, physical pathway referred to as the 
“Medicine Man Trail,” which ensured diversity and 
sustainability for many thousands of years. The 
Trail reaches from Alaska, across Siberia into 
Mongolia, but also through Canada, across Lakota 
territory, and into Maya territory, branching off 
throughout. “Traveling the trail as far as the horizon 
could be seen introduced us to a diversity of life 
forms in constant motion. We learned the way natu-
ral systems work and how all life is interconnected 
and interdependent. This knowledge is held in our 
songs, stories and in the sciences and life ways we 
carry. Whether human, horse or the microbial life 
that moves with them, singing the song of life is a 
gift that ensures sustainability.”

Jane Stelkia is an Elder for the sqilxʷ/suknaqin 
or Okanagan Nation, which is based on her People’s 
traditional lands in Canada. As a native Nsyilxcen 
speaker and a keeper of traditional science sur-
rounding Snklc’askaxa, the Horse Nation, she con-
firms her People’s experience with the “Medicine 
Man Trail” and adds: “Snklc’askaxa serve as balancers 
in the ecosystem, and when we Indians are in the 
mountains on Snklc’askaxa, we connect with the 
water, the rain, the trees, the flowers blooming. 
Together we experience all of life. Today, we live in 
a world where the boundaries and obstacles created 
by mankind do not serve the majority of life. In this 
study, Snklc’askaxa is offering us medicine by re-
minding us of the path all life takes together to 
survive and thrive. It is time that humans help 
life find the openings and points to cross and 
move safely.”

The ability for life forms to migrate as relational-
ity around them changes is key for long- term sur-
vival. Genetic change as a result of yutaŋ’kil should 
not be feared or artificially blocked but respected 
as proof of life’s strength and resilience. Our ability 
and willingness to support this process determines 
our sustainable future.
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Materials and Methods 

Applied Lakota Genomic Scientific Protocols 

All Lakota science protocols begin with the application of their ethical and 

multidimensional construct. As maintaining sustainability between life forms is their scientific 

goal, the application of this construct is mandatory within all research to ensure that (i) as little 

harm as possible is done to life, (ii) maximum alignment of natural forces occurs, and (iii) 

optimal genomic data can be obtained for the specific scientific purpose determined. There are 

no direct translations from the Lakota language into English. Therefore, this protocol is brought 

forward first in the Lakota language, as would be directly understandable and applicable to a 

Lakota traditional science practitioner, and then described in English, with specific Lakota 

scientific concepts utilized when precise English translation is not possible. This protocol 

outlines the steps necessary to set the boundaries of this construct, including the application of 

their Seven Generations Analysis (1), which is applied at the completion of every study to 

evaluate the impact of the research findings on the next seven generations of life and beyond. 

This construct and related principles were applied throughout this study. They are additive to the 

Western scientific genome sequencing protocol described below in the next section. 

Woksape wamahatuye woableza woecun kin iyuha wakaŋ ya unkowanpi, wičoni wakan yelo. 

Woyucaŋ lena ohinniyaŋ wočiccumptan il unhapikte. 

Oyate ta woecun kiŋ wokunze ai kwake. 

Wakaŋ tanka ta woyake oyate oun kin le kiyela awica upi okihi. 

Wopasi kin taku oyate ecetkiya akipa yuha kte, waste na sica? Toske Unči Maka na 

Wamakanska ahiglye kte sel? 

Tuwe icunkte kin ota kin šungwakaŋ woslolye yuha kte. 

Sungwakaŋ otakuye opapikte wopasi ki canke’ “Yuoniha” wicakichopi kte. 

Sunwakaŋ naǧi tawapi ki lena nahangci ni pi heun “piitchiyapi hel ogna kecanwicunyampi” 

Mni wanca kowakata oyate tuwe sunka wakan yuonihapi kin hena ilag wicun yanpi kte. Ho hecel 

sunka wakan hena wicotawacin ikpazo yunkapi kte. 

Wopasi kin taku hecena Wiconi pi can hogna ilagwicunpi kta heca 

Wičoni kin topa opa lo: Taku; oniyaŋ; naǧi; otakuye. 

Lena iyuha hecel wopasi ecunpi kte 

Sunkwakan nagi ki chopi canke’ wounspe’ tawapi ki wicakilapikte hecel taku sloye’ necinyapi 

ke henna yunayeniciyapi okihipi. 

Wowasi kin wicoincaga Šakowiŋ tokatakiya icanupi hecel woecun iglustanpi kin iyowaza onagu 

iyapi kte 

Wasiču Wakanyapi wamahituya wounspe akiyapi na naǧi kicunya woableza ki lena iyastag 

ecumpihantansh ecila Wicoincaga Šakowiŋ win Tokatakiya woableza lena yuha pi kte. 

In practice, and for conducting genomic work, this protocol is divided into four parts. 

The first step (Laboratory Preparation) involves cleaning the laboratory space and all 

spaces utilized in the experiment of any interfering taku particles (matter), oniyaŋ (energy or 

force), or naǧi (essence of life) that would influence the experiment in an adverse fashion, or 

reduce the efficacy of the outcomes (see reference (1) for more detailed explanation of Lakota 

scientific terms). 



 

 

 

 

The second step (Sample Preparation) applies the same cleaning process to samples, as it 

is critical that the ouŋye (agency) of each of the life forms attached to the samples is 

acknowledged. Extreme attention should be paid to which groups of samples are included in a 

given experimental session, to ensure that their mitakuye (relationality) is respected and to 

maximize the desired outcome. 

The third step (Strengthening and Holding Forces Together) is necessary throughout the 

experimental work and requires maximizing the alignment of the practitioner with the sample 

naǧi, škaŋ (life flow), mitakuye, and ouŋye, throughout the process. This establishes the 

necessary order for different components of life to return in each of its parts to the samples 

during the experimental period, ensuring that measurement can be optimally recorded. 

The last step (Dissipation) guides the end of the experiment to allow for the respectful 

dissipation of each of the components and forces utilized according to the speed at which the 

ouŋye and physics of the specimens allow and require. 

 

Genome sequencing 

A total of 66 ancient horse skeletal and dental remains were processed in the ancient DNA 

facilities of the Centre for Anthropobiology and Genomics of Toulouse (CAGT, France). The 

experimental procedure follows methodologies previously described (25,53,54), and relies on 

seven sequential technical operations, carried out between the third and fourth steps described 

above. These include: (1) sample powdering (80-1,080 mg, median=200 mg); (2) powder 

decontamination with bleach (15 min in 4mL of a 0.5% sodium hypochlorite solution, followed 

by 3 consecutive water washes), pre-digestion, and digestion; (3) DNA purification; (4) USER© 

enzymatic treatment; (5) DNA library construction; (6) PCR amplification, and; (7) DNA library 

pooling and sequencing. 

The pre-digestion step involved incubating the bone and/or dental powder with 3.85 mL 

of digestion buffer (0.45M EDTA, 0.25mg/mL Proteinase K (ThermoFischer Scientific), and 

0.5% N-LaurylSarcosyl (Dutscher) for 60 mins at 42°C, before retrieving undigested pellets by 

removing the supernatant following a 2 minute centrifugation at maximal speed, and completing 

digestion overnight in 3.85 mL of fresh digestion buffer with agitation at 37°C. DNA 

purification was carried out by reducing the volume of the digestion reaction to approximately 

~250 uL, first by using a 45-90 min centrifugation at 3,000 rpm on a Centricon column 

(Millipore 30 kDa), and then by using MinElute columns (QIAgen), with a final eluate of 60 uL. 

Triple indexed DNA libraries were constructed following end-repair, adapter ligation and nick 

filling reactions, following enzymatic treatment of 22.8 uL of purified DNA extract with 7.0 uL 

of USER (New England Biolabs) enzymatic mix for 3 hours at 37°C (38,54). The size profile 

and DNA concentration of each individual library was checked using the High Sensitivity DNA 

Screen Tape system on a TapeStation 4200 instrument (Agilent). DNA libraries were pooled 

before sequencing on a MiniSeq Illumina instrument at CAGT for assessing DNA content and 

preservation levels (Paired-end mode, 2x81 cycles), and HiSeq 4000 and/or NovaSeq 6000/X 

Illumina instruments for deep shotgun sequencing in the dedicated facilities of Genoscope (Evry, 

France; Paired-end mode, 2x75 cycles) and Novogene (Cambridge, UK; 2x150 cycles), 

respectively. 

Fifteen of the 67 newly processed horse samples were treated in a dedicated ancient DNA 

facility at the University of California Santa Cruz Paleogenomics Laboratory (UCSC PGL; table 

S1). For each of these, 50 mg of bone powder was pretreated with sodium hypochlorite in 

accordance with Korlević and Meyer (55), followed by the DNA extraction protocol described in 



 

 

 

 

(56). Each extract was prepared into single-stranded DNA libraries using the Santa Cruz 

Reactions method (57). Each DNA library was enriched for 22,619 genomic regions spanning 

the horse genome, as described in (58). Custom Arbor myBaits (detailed in (58)) were used on 

all individual libraries. The enriched regions targeted neutral single nucleotide polymorphisms 

(SNPs) ascertained from four ancient horse genomes previously sequenced to 18-26X coverage: 

two from North America (YG303.325 and YG188.42/YT03-40; (22)) and two from Siberia 

(Batagai; (39), and CGG10022 (37, 59); table S1). SNP ascertainment and comparison of the 

two capture methods are described in detail in (58). All 15 capture libraries were sequenced on 

Illumina NextSeq 550 (2x150 cycles) or NextSeq 2000 (2x61 cycles) instruments. Four of the 

fifteen specimens processed at UCSC through target enrichment were also shotgun sequenced at 

CAGT to maximize genome coverage (JK273 (KU42626), JK274 (KU43413), JK275 

(KU47538) and JK278 (KU47519); table S1). 

 

Read processing, mapping and sequence variation 

Paired-end FASTQ sequencing reads were demultiplexed and trimmed for low-quality ends and 

adapters, using AdapterRemoval2 (v2.3.1), using the high-sensitivity parameters from (60), and 

tolerating one mismatch in each of the 7 bp internal indexes (--trimns --trimqualities --

minadapteroverlap 3 --mm 5). This procedure returned read pairs showing sufficient sequence 

overlap for being collapsed in single reads (‘Collapsed’ and ’Collapsed truncated’), as well as 

the remaining fraction of read pairs showing no significant overlap (‘Paired’). Both types of 

reads were aligned against the horse EquCab3 reference genome (61), supplemented with the Y-

chromosome contigs from (62), disregarding those shorter than 25 nucleotides. Paleomix 

(v1.2.13; (63)) was used post-trimming/collapsing, including for read alignment using Bowtie2 

(v2.3.4.1; (64)) with the parameters recommended by Poullet & Orlando (65), local read 

realignment around indels using GATK (v3.8.1; (66)), and the filtering of duplicates and low-

quality alignments (MQ<25). Final genome coverage was estimated using paleomix coverage 

and ignoring read groups, and the sex of each individual was assessed from the ratio of high-

quality alignments against the autosomes and the X chromosome, expecting ~2:1 and ~1:1 ratios 

in males and females, respectively (table S1). 

 BAM alignment files were directly processed for estimating sequencing error rates, 

following the methodology from (25,54) leveraging three-days alignment between the ancient 

genome considered, a high-quality ‘perfect’ genome from a modern Arabian individual 

(ERR3465836), and an ancestral genome. Errors were estimated relative to the branch length 

leading to the ‘perfect’ genome, and broken down by substitution class (table S1 and fig. S4). 

BAM alignment files were also analyzed using PMDtools v0.60 (67) and mapDamage v2.2.1 

(68), to assess the presence of signatures of post-mortem DNA damage. The sequence data 

generated from single-stranded DNA libraries prepared on extracts not treated with the USER 

enzymatic mix showed expected CT nucleotide mis-incorporation patterns (69), increasing 

both towards template starts and ends (fig. S2AB). Similarly, the sequence data generated for the 

remaining samples (i.e. double-stranded DNA libraries prepared on extracts treated with the 

USER enzymatic mix) showed inflated CT nucleotide mis-incorporation rates towards 

template starts, and symmetric profiles for their complementary GA mis-incorporations 

towards template ends (fig. S2CD). The latter signatures were, however, only observed when 

conditioning analyses to CpG dinucleotides, in line with USER treatment eliminating C residues 

that have been degraded into Uracil residues, following post-mortem deamination (70). 

Moreover, we checked base compositional profiles using mapDamage v2.2.1 (68) as a further 



 

 

 

 

assessment of the presence of post-mortem DNA damage signatures. The sequence data 

generated from single-stranded DNA libraries prepared on extracts not treated with the USER 

enzymatic mix showed the expected excess of purines at the positions located right upstream and 

downstream of sequence alignments in the reference genome (fig. S3), in line with depurination 

driving DNA fragmentation after death (71). The sequence data generated for the remaining 

samples, whose DNA extracts were USER treated, showed the expected excess of Cytosine 

residues at the positions located right upstream of sequence alignments in the reference genome. 

This was mirrored by an inflation of complementary Guanine residues at the positions located 

right downstream of sequence alignments in the reference genome. Combined, these signatures 

authenticate the sequence data generated as deriving from genuine ancient DNA molecules. 

BAM alignment files were further processed to identify transversion SNPs, using the 

methodology from (25,54). Read ends were, however, not trimmed and the quality of sites 

potentially associated with post-mortem DNA damage were not masked, as the vast majority of 

the sequence data (99.88% of all aligned ‘Collapsed’ or ‘Collapsed truncated’ reads, and 99.76% 

of all aligned ‘Paired’ reads) were produced following USER-treatment a treatment aimed at 

limiting the impact of post-mortem DNA damage. Briefly, the procedure used ANGSD (htslib: 

1.16, build Dec 10 2022 14:56:47; (72)) to retrieve counts of each nucleotide at those 

transversion positions that are covered in at least 80% of the specimens and are likely 

polymorphic in the overall genome sequence panel considered (-SNP_pval 1e-16 -remove_bads 

1 -minMapQ 25 -minQ 30 -rmTrans 1 -rmTriallelic 1e-4 -C 50). Counts were further processed 

to randomly sample one nucleotide per position in every single sample, disregarding positions 

within the 99.5 quantile of the coverage distribution. This procedure returned a final TPED 

matrix including 9,386,235 pseudo-haploid positions in 227 specimens, consisting of the 67 

genomes newly characterized in this study, and a subset of genomes previously sequenced and 

chosen to encapsulate the entire range of the lineages identified (table S1). 

 

Phylogenetic reconstructions and population graph modelling 

Mitochondrial read alignments were generated through the Paleomix procedure described above 

against the horse reference mitochondrial genome (Accession nb. NC_001640; (73)). The first 30 

reference positions were copied at the end of the sequence to allow identification of reads 

mapping to both ends of a linearized circular genome, following (59). BAM files were processed 

one at a time with BCFtools (v1.8-31-g9ba4024, using htslib 1.7-41-g816a220; (74)) to call 

genotypes at sites with coverage of at least 5, and FMT/GQ ratios greater than or equal to 30. 

Genotypes were called considering the data diploid to account for the typically elevated 

heteroplasmic levels found in horses, including in clones (75), and DNA sequencing errors 

typical of ancient DNA data ((69); table S1). Genotype variation was converted into FASTA 

files using paleomix vcf_to_fasta (v1.3.7; (63)), and mitochondrial haplotypes were aligned 

manually against the donkey mitochondrial reference haplotype (Accession nb. CM027722.2; 

(76)), which served as outgroup. Sites showing over 50% missingness as well as repeats located 

between positions 16,121-16,360 of the horse mitochondrial reference genome were disregarded, 

and the consensus of the first and last 30 nucleotide positions was rewritten to the first 30 

positions, before excluding the last 30. We then added to this alignment the mitogenome 

sequences of one E. przewalski (MW348986.1) and eight E. dalianensis (MW348985.1, 

MW348987.1- MW348993.1) ancient specimens, published by Yuan et al. (27), to construct a 

Maximum Likelihood phylogeny in IQtree (v1.6.12; (77)). We carried out 1,000 bootstrap 

pseudo-replicates and ultrafast bootstrap approximation for assessing node support, and 



 

 

 

 

considered the best substitution model according to the Akaike Information Criterion (AIC; 

GTR+F+R10) (Fig. 1C and fig. S5). 

High-quality read alignments against the Y chromosome were processed according to the 

procedure used for detecting autosomal variation, excepting that: (1) analysis was restricted to 

the single copy regions identified by Felkel et al. (62); (2) the -SNP_pval was increased to 1e-6, 

and; (3) positions covered in at least 50% of the male specimens were considered. This 

procedure returned a final TPED matrix including 16,142 haploid positions across the single 

copy Y chromosomal contigs from 130 specimens. Y chromosome phylogenies were carried out, 

following the same methodology used for mitochondrial analyses, tolerating up to 90% missing 

data per sample and resulting in a subset of 127 sequences (N=14,699 bp; fig. S6). 

Phylogenetic affinities for autosomal transversion SNP variation were reconstructed 

using FastMe (v2.1.6.2; (78)), and assessing node support from 100 bootstrap pseudo-replicates 

using newick utils (v1.6; (79); Fig. 3A). All phylogenies were plotted using R, and the ape, 

ggrepel, ggtree, tidytree and treeio libraries. 

Phylogenetic trees incorporating admixture events were reconstructed using 

AdmixtureBayes (32) and OrientAGraph (33), as two optimal methods for inferring optimal 

population graphs. These analyses used predefined population groups consisting of donkeys as 

outgroups, plus eight horse lineages, including A-EBer, A-IFC, A-LO48, E-NESib, E-NESib*, 

E-SERus, and URAL, while merging A-NBer and A-WBer, due to their close genetic affinities, 

to save computational running times (Fig. 3A). For both analyses, individual allele frequencies 

were stratified per site and per group using Plink v1.9 (80) (--freq –within), disregarding sites 

with no sequence data at the group level were disregarded (--mac 1), which left a total of 

2,335,557 sites for the analyses. AdmixtureBayes (32) was run for a total of 200 million 

iterations (--n 40000000), and considering 20 MCMC chains and 10 admixture events at most (--

max_admixes 10). The posterior distribution of admixture graphs was generated pruning the first 

50% as burnin, and thinning one every 2,500 of the remaining (resulting in a final set of 1,000 

trees). Convergence was checked using Gelman-Rubin convergence diagnostic across three 

independent analyses, showing posterior values tending to 1.0. Fig. 4A shows the population 

graph with the highest log-posterior in the posterior distribution, which represents 22.6% of the 

posterior graph space. The consensus graph across the graph posterior distribution and all graphs 

accounting each for at least 5% of the graph posterior distribution are also provided in fig. S15. 

OrientAGraph (33) analyses were run following Librado et al. (54), running the maximum 

likelihood network orientation subroutine as part of search heuristic (-mlno), and considering up 

to 5 migration edges (-m) and blocks of 100 SNPs for estimating the covariance matrix. The 

model assuming M=5 migration edges was considered the most optimal (Fig. 4B), as: (1) it 

explained 99.9999867% of the genetic variance, and; (2) model residuals were lower than 2.1 

times the average standard error observed between all population pairs. All models reconstructed 

assuming M=0 to M=5 are displayed on fig. S16, together with their respective residual fits from 

the Maximum Likelihood tree. 

 

Population structure 

Pairwise estimates of genetic proximity between samples were calculated as f3-outgroup 

statistics (30), using 5 Mb genomic blocks for jacknifing in Calc-f3 (31) and the two donkey as 

outgroups, while masking sample pairs with less than 25,000 positions covered (fig. S10). 

Principal Component Analyses (PCA) were repeated in smartPCA (81), turning on the 

AUTOSHRINK mode and activating the ‘inbreed’ option to account for pseudo-haploid data 



 

 

 

 

(Fig. 2A and fig. S7-S9). Outgroups were removed from the matrix of autosomal variation as 

well as sites under linkage disequilibrium using Plink v1.9 (80); --indep-pairwise 500 10 0.2). 

Only variants represented at a minimal allele frequency of 5% were considered (--maf 0.05), 

resulting in a total of 2,133,241 sites. Samples JK162 (IMNH 1136/11898), JK273 (KU42626), 

JK274 (KU43413), JK275 (KU47538), JK278(KU47519), PH042 (P95.1.42), AV073 (Eq-

Suh/2) and AV075 (Eq-Suh/5) were projected against the PCA space defined by the other 

samples using LSQ projection, to account for their relatively limited sequence coverage (average 

depth-of-coverage=0.01-0.41-fold) (Fig. 2A and fig. S7-S9). 

The SNP matrix considered for PCA was also processed in ADMIXTURE (v1.3.0; (29)) 

to profile the proportions of main genetic ancestries in each individual sample (Fig. 3B and fig. 

S12). A range of K=2 to 10 genetic ancestries were considered, with K=4 cross-validated as the 

best option (--cv=10). Confidence intervals for genetic ancestry proportions were estimated from 

100 bootstrap pseudo-replicates, setting the minor convergence criterion (-c) to 0.0001, for K=2 

to K=4. Ancestry profiles were further evaluated using the Struct-f4 package (31) for the same 

range of genetic components (K=2 to K=10), and considering the full matrix of transversion 

SNPs, i.e. including donkey outgroups. The combination of the 5,619,600 possible non-

redundant f4-statistics were first calculated using Calc-f4 (31), forcing the two donkeys as a 

single outgroup, and jack-knifing through 5 Mb blocks. Individual ancestry proportions were 

then estimated using f4-statistics as input and running the Struct-f4.r function (31) for 20 million 

iterations for the first MCMC chain (assuming no admixture), and 100 million iterations for the 

second MCMC chain (assuming admixture between K ancestry components). Genetic ancestry 

profiles were plotted in R using the ggplot2 library, ordering samples according to their 

autosomal NJ tree genetic affinities (Fig. 3A, Fig. 3C, and fig. S13). 

D-statistics of the form (Outgroup, X; URAL, Y), where X represent any of the A-EBer, 

A-IFC or A-LO48 population groups, and Y any of the E-NESib, E-NESib*, E-SERus and 

Rus45 individuals, were calculated using qpDstats v751 (30) and the whole matrix of SNP 

transversions (fig. S14A). Additionally, D-statistics of the form (Outgroup, X; Taymir, Y) were 

calculated using the same methodology (fig. S14B); here, we grouped together Late Pleistocene 

E-NESib individuals excavated in the Taymir peninsula, to represent the location in our data set 

that is located at the westernmost range of West Beringia, hence, least likely to have received 

some genetic influence from American horses). F4-ratios were calculated using qpF4RATIO 

(30) on the same data, considering genomic blocks of 5 Mb for jacknifing, and configurations of 

the form (((A,B),C),O). The tested samples tentatively shared genetic contributions from the B 

and C lineages. Here, A was assumed to be either A-LO48 or A-IFC; B comprised all members 

of the A-EBer lineage, and C included either a subset of E-NESib specimens showing no D-

statistics evidence of possible admixture with A-EBer, A-IFC and A-LO48 populations (i.e. 

PH153, UP362, UP354 and Rus30x31; E-NESib$), or a subset of E-NESib specimens from the 

Taymir peninsula, located in the northwesternmost range of northeast Siberia, i.e. the farthest 

away from Beringia in the region. The estimated genetic contributions from the A-EBer lineage 

in the individuals tested are shown in Fig. 3D, when their confidence range was greater than 

zero. 

 

Demographic trajectories 

The past demographic trajectory of A-IFC horses, all radiocarbon dated to ~13 kyr B.P. (table 

S1), was reconstructed using GONE (v1.0, (34)) (Fig. 5A). Default parameters were used, except 

for the number of bootstrap pseudo-replicates considered, which was set to N=100, and the 



 

 

 

 

PHASE option, which was turned to 0 to account for data pseudo-haploidization. Genetic 

distances were linearly interpolated from physical distances using the closest markers identified 

in the recombination map from Beeson et al. (82). Following Librado et al. (25), transversion 

SNPs along chromosomes 7, 11, 12 and 20 were removed to avoid local mis-assembly issues and 

unaccounted large-scale structural variation potentially affecting the validity of the 

recombination map. Only sites covered in at least 50% of the samples were considered, 

representing a total of 1,962,038 transversion positions. Time (i.e. number of generations prior to 

13,088 kyr B.P., as the average radiocarbon dates of the A-IFC individuals) was converted in 

calibrated years B.P., assuming a generation time of 7.4 years, following the estimate recently 

published by Librado et al. (25), as the average generation time across DOM2 and pre-DOM2 

lineages from Eurasia in the last 15,000 years. 

 

Radiocarbon dating and isotope measurements 

The newly analyzed data include 24 specimens from North America, and 13 from Eurasia (tables 

S1 and S2). Collagen was isolated from fossil horse bones following standard protocols (83). 

Radiocarbon dating and δ13C and δ15N isotope profiling was performed at the Keck AMS 

laboratory, University of California Irvine (USA). Samples of cortical bone were cleaned 

mechanically and aliquots of ~200mg were crushed to mm-sized chips. If contaminating 

conservation materials were present, samples were sonicated in acetone, methanol and ultrapure 

MQ water in a water bath cooled to well below the melting point of collagen. Bone was 

decalcified overnight at room temperature, using a measured amount of 1N HCl just sufficient to 

dissolve all of the bone mineral, if no collagen was present. The demineralized samples were 

washed with MQ water and gelatinized overnight at 60°C and pH=2, ultrafiltered in precleaned 

Vivaspin 15 devices to select the >30kDa molecular weight fraction, and freeze dried overnight. 

Aliquots of 2 mg of collagen were combusted under vacuum in quartz at 900°C with CuO and 

silver wire, and the resulting CO2 was cryogenically purified and graphitized on Fe by hydrogen 

reduction for 14C measurement by AMS on an NEC 0.5MV. 0.7 mg collagen aliquots were 

sealed in tin capsules and flash combusted in a Fisons NA1500NC elemental analyzer interfaced 

to a Finnigan Delta Plus isotope ratio mass spectrometer for elemental analyses and δ13C and 

δ15N measurements. 

 

Isotope database compilation 

The dataset used in our study is a compilation of 3,809 published (N=3,585) and newly 

generated (N=224) data, including calibrated radiocarbon dates (N=3,063), δ15N (N=3,762), and 

δ13C (N=3,053) values from collagen, from a total of 115 individual studies spanning Europe, 

Asia, and North America, with a great majority of late Pleistocene (>11,700 years) individuals. 

The compiled published data include mostly obligate grazers with 292 bison, 996 horses, 504 

mammoths, 31 sheep, 316 wooly rhinoceros and 35 aurochs. The remaining specimens are 

browsers and mixed browsers/grazers, including 563 reindeer, 427 deer, 211 muskox, 122 bears, 

119 saiga antelopes, 108 mastodons, 36 moose, four chamois, five ibex, four camels, five sloths, 

plus three ground squirrels, four grouse, and seven rabbits. A few omnivores and carnivores are 

also considered, including seven wolves, one fox and one cave lion. The database also includes 

approximate latitude and longitude data for each individual sample. In the majority of cases, 

geographic coordinates were reported by the authors in the publication. When not originally 

reported, Google Earth was used to georeference the reported geographic information (i.e. maps 

and site locality). When necessary, authors of publications were contacted to clarify locality 



 

 

 

 

information. The method of georeferencing and its associated uncertainty are reported in the 

database, which is available in table S2 (along with the full citations of the original sources from 

which the data sets were derived). The data can be filtered by museum, museum ID, species and 

taxon, region, diet, sample type or analytical substrate. 

 

 

 

 

  



 

 

 

 

 

Fig. S1. Geographic distribution of the samples investigated in this study. (A) Summary map 

of all specimens, including those previously and newly sequenced. Shapes and colors are 

consistent with those used in the various figures, and reflect the different population groups, in 

line with those from previous publications (25). (B) Summary map of the specimens newly 

sequenced in this study. Sample labels include first a name, followed by a three-letters code 

referring to their country of origins, and the midpoint of the radiocarbon date in calibrated years 

B.P. (INF is shown for specimens associated with infinite radiocarbon measurements). For 

clarity, a single annotation is indicated in locations where multiple specimens were analyzed. In 

such cases, labels indicate the number of specimens (#) and provide their radiocarbon range (see 

table S1 for individual information). (C) Same as (B), for the specimens previously sequenced 

and used as a comparative panel. 

 

  



 

 

 

 

 

Fig. S2. Nucleotide mis-incorporation patterns typical of ancient DNA damage. (A) CT 

(Top) and GA (Bottom) nucleotide mis-incorporation rates at the first 10 positions of read 



 

 

 

 

alignments. (B) Same as (A), but for the last 10 positions of read alignments. Sample JK162 is 

indicated with a filled triangle, while all the other samples are shown with filled circles. JK162 

was prepared on raw DNA extracts (i.e. not treated with the USER enzymatic mix), and using 

the single-stranded DNA library preparation protocol from Kapp et al. (57). As expected, it 

shows highly-inflated CT mis-incorporation rates, relative to all other specimens for which the 

vast majority of the sequence data was generated on USER-treated DNA extracts, and following 

the double-stranded DNA library procedure from Librado et al. (25,54). The latter show the 

expected inflation of CT nucleotide mis-incorporations at the first aligned nucleotide, and their 

complementary GA at the last position of the alignment. In contrast, the profile of sample 

JK162 show an inflation towards both alignment starts and ends, but only of CT nucleotide 

mis-incorporations, as expected when using single-stranded DNA libraries (69). (C) CT 

nucleotide mis-incorporation rates at the first 10 positions of read alignments, conditioning on 

CpG dinucleotide positions only. (D) GA nucleotide mis-incorporation rates at the first 10 

positions of read alignments, conditioning on CpG dinucleotide positions only. When subjected 

to post-mortem deamination, methylated CpG dinucleotides are modified into TpG 

dinucleotides, generating CpGTpG mis-incorporations during sequencing (70). Conditioning 

on CpG dinucleotides, thus, offers an opportunity to investigate the presence of nucleotide mis-

incorporation related to post-mortem deamination of Cytosines, even if ancient DNA extracts 

were treated by the USER enzymatic mix. All samples show the expected inflation of CT 

nucleotide mis-incorporation rates towards alignment starts (panel C). All samples, but JK162, 

also show the expected inflation of complementary GA nucleotide mis-incorporation rates 

towards alignment ends (panel D). Sample JK162 is not expected to show inflated GA 

nucleotide mis-incorporation towards alignment ends, due to the single-stranded DNA library 

preparation protocol that was used. 

  



 

 

 

 

 

Fig. S3. Base composition profiles. (A) Base frequency for the first 10 alignment positions 

between reads and the reference genome (1 to 10), and the five reference positions preceding 

alignment starts (-5 to -1). (B) Base frequency for the last 10 alignment positions between reads 

and the reference genome (-10 to -1), and the five reference positions following alignment ends 

(1 to 5). Sample JK162 is indicated with a filled triangle, while all the other samples are shown 

with filled circles. JK162 was prepared on raw DNA extracts (i.e. not treated with the USER 

enzymatic mix), and using the single-stranded DNA library preparation protocol from Kapp et al. 

(57). Due to depurination driving post-mortem DNA fragmentation (71), the base compositions 

of the first nucleotide positions preceding and following the alignments are slightly inflated in 

Guanine residues. All the other samples, for which the vast majority of the sequence data were 

generated following treatment of raw DNA extracts with the USER enzymatic mix, show an 

inflation of Cytosine residues. This aligns with USER cleaving DNA templates at those Cytosine 

positions that have been deaminated post-mortem (69). The base composition profiles of those 

specimens are also inflated in complementary Guanine residues at the positions immediately 

following read alignments, in line with the expectations of the double-stranded DNA library 

preparation protocol used (69). 

  



 

 

 

 

 

Fig. S4. Genome sequence error rates (per base). Individual error rates per base are provided 

in table S1. The figure displays the distribution of the overall (‘All’) error rates (i.e. combining 

all substitution classes), and those of individual substitution classes (AC, AG, AT, CA, 

CG, CT, GA, GC, GT, TA, TC, and TG). Error rates are log10 transformed 

for clarity. CT and GA transitions show inflated error rates than their reciprocal transitions 

(i.e. TC and AG), in line with the presence of nucleotide mis-incorporations at Cytosine 

sites that have been damaged by deamination post-mortem (67-69,71). The outlier sample 

showing an elevated overall error rate corresponds to specimen JK162 (IMNH 1136/11898), 

which is the least covered and for which only target enrichment data were generated. 

  



 

 

 

 

 

Fig. S5. Maximum Likelihood (ML) tree for mitochondrial DNA (N=16,420 bp). 

Phylogenetic reconstruction was carried out using IQtree (v1.6.12; (77)) and the best substitution 

model identified according to the Akaike Information Criterion (AIC; GTR+F+R10 substitution 

model). The E. przewalzki and E. dalianensis sequences previously published by Yuan et al. (27) 

are indicated with reference to their Genbank accession numbers and added for comparison. 

Node supports (%) are displayed when greater than 80% as estimated from 1,000 replicates and 

ultrafast bootstrap approximation. Trees were manually rooted using donkeys as outgroups (not 

shown). A circularized version of this tree is shown as Fig. 1C. 

  



 

 

 

 

 
Fig. S6. Maximum Likelihood (ML) tree for Y-chromosomal DNA (N=14,699 bp). 

Phylogenetic reconstruction was carried out using IQtree (v1.6.12; (77)) and the best substitution 

model identified according to the Akaike Information Criterion (AIC; K3P+R4). Node supports 

(%) are displayed when greater than 80% as estimated from 1,000 replicates and ultrafast 

bootstrap approximation. Trees were manually rooted using donkeys as outgroups (not shown). 

  



 

 

 

 

 

Fig. S7. Principal Component Analysis (PCA): PC2 versus PC3. The AUTOSHRINK mode 

was applied, and a total of eight samples were projected on the PC space defined by the 

remaining samples, due to coverage limitations (and the absence of shotgun sequence data for 

JK162). The eight samples projected are: JK162 (IMNH 1136/11898), JK273 (KU42626), JK274 

(KU43413), JK275 (KU47538), JK278(KU47519), PH042 (P95.1.42), AV073 (Eq-Suh/2) and 

AV075 (Eq-Suh/5) (table S1). Labels indicate the main lineages, except for a few remarkable 

samples. Newly sequenced samples are highlighted with larger sizes. The proportion of the 

variance explained by the second and third PCs (PC2 and PC3) is shown between parentheses. 

The positions of the different samples along PC1 and PC2 are shown on Fig. 2A. 

  



 

 

 

 

 

Fig. S8. Principal Component Analysis (PCA): PC3 versus PC4. The AUTOSHRINK mode 

was applied, and a total of eight samples were projected on the PC space defined by the 

remaining samples, due to coverage limitations (and the absence of shotgun sequence data for 

JK162). The eight samples projected are: JK162 (IMNH 1136/11898), JK273 (KU42626), JK274 

(KU43413), JK275 (KU47538), JK278(KU47519), PH042 (P95.1.42), AV073 (Eq-Suh/2) and 

AV075 (Eq-Suh/5) (table S1). Labels indicate the main lineages, except for a few remarkable 

samples. Newly sequenced samples are highlighted with larger sizes. The proportion of the 

variance explained by the third and fourth PCs (PC3 and PC4) is shown between parentheses. 

The positions of the different samples along PC1 and PC2 are shown on Fig. 2A. 

  



 

 

 

 

 

Fig. S9. Principal Component Analysis (PCA): PC4 versus PC5. The AUTOSHRINK mode 

was applied, and a total of eight samples were projected on the PC space defined by the 

remaining samples, due to coverage limitations (and the absence of shotgun sequence data for 

JK162). The eight samples projected are: JK162 (IMNH 1136/11898), JK273 (KU42626), JK274 

(KU43413), JK275 (KU47538), JK278(KU47519), PH042 (P95.1.42), AV073 (Eq-Suh/2) and 

AV075 (Eq-Suh/5) (table S1). Labels indicate the main lineages, except for a few remarkable 

samples. Newly sequenced samples are highlighted with larger sizes. The proportion of the 

variance explained by the fourth and fifth PCs (PC4 and PC5) is shown between parentheses. 

The positions of the different samples along PC1 and PC2 are shown on Fig. 2A. 

  



 

 

 

 

 

Fig. S10. f3-outgroup statistics. The two donkey genomes present in our genome panel were 

used as outgroups. Statistics are in the form: (H1,H2; Outgroup). Samples are ordered according 

to their phylogenetic placement in Fig. 3A. f3-outgroup statistics calculated from less than 

25,000 sites are masked. The sequence data generated for sample JK162 were minimal (table 

S1), and only resulted from target-enrichment experiments, in contrast to all the remaining 

samples. 

  



 

 

 

 

 
 

Fig. S11. Linear regression of the ADMIXTURE (29) genetic ancestry maximized in A-

NBer and A-WBer genomes against longitude. The fitted Pearson linear regression model is 

shown with a blue line, with standard errors in grey. The labelled samples, including E-NESib*, 

E-SERus and Rus45 individuals, were not included in the model, as from different genetic 

backgrounds. Longitude was transformed by adding 360 degrees when inferior to -30, to place 

the American continent in continuity with Eurasia. 

  



 

 

 

 

 

Fig. S12. ADMIXTURE (29) genetic ancestry profiles from K=2 to K=10. K=4 is shown on 

Fig. 3B, as the optimal number of genetic ancestries following cross-validation. 

  



 

 

 

 

 

Fig. S13. Struct-f4 (31) ancestry profiles from K=2 to K=10. K=6 is also shown on Fig. 3C. 

  



 

 

 

 

 

Fig. S14. D-statistics (30). (A) D-statistics of the form (Donkeys, H3; H2, H1), where H1 

represents the sample indicated on the x-axis, H2 groups together members of the URAL lineage 

and H3 comprises the members of either A-EBer, A-IFC or A-LO48 populations, were calculated 

using qpDstats. (B) Same as (A), excepting that H2 groups together Late Pleistocene samples 

from the Taymir Peninsula (located in the westernmost range of West Beringia; i.e. BS229, 

BS225, BS232, BS236, CGG10022, and CGG10023; table S1). Positive (negative) D-statistics 

indicate an excess of genetic sharedness between H1 (H2) and H3. D-statistics were sorted from 

greatest to lowest values in each of the population groups considered for H1 individuals. Red 

colors reflect those statistically significant tests, correcting for multiple testing (Holm correction, 

p-value < 0.05). 

  



 

 

 

 

 
Fig. S15. AdmixtureBayes (32) population graphs. (A) Consensus population graph. 

Percentages reflect the posterior confidence received by each node. Population groups formed by 

admixture are surrounded with dashed circles. (B) Most common population graph in the graph 

posterior distribution (posterior probability=36.7%), with corresponding drift and admixture 

estimates. A simplified version of this graph is also represented in Fig. 4A, as the one showing 

the greatest posterior probability. (C) Second most represented population graph in the graph 

posterior distribution (22.6%), with corresponding drift and admixture estimates. A simplified 

version of this graph is also represented in Fig. 4B; it represents the one associated with the 

greatest log-posterior. (D) Same as (C), for the third most represented graph (14.8%). (E) Same 

as (C), for the fourth most represented graph (7.1%). (E) Same as (C), for the fifth most 

represented graph (5.7%). All other graphs together sampled represent less than 5% of the 

posterior distribution. Open circles and black squares indicate nodes and admixture events, 

respectively. Genetic drift and admixture proportions are indicated next to arrows with numbers 

(multiplied 100 times for clarity), and percentages, respectively. Branches showing substantial 

drift (≥0.1, i.e. 10.0 when multiplied 100 times) are colored in green. The respective log-

posteriors are indicated below each model. 

  



 

 

 

 

 

Fig. S16. OrientAGraph (33) population graphs, and residuals to fit. (A) Best population 

graphs assuming K=0 to K=5 migration edges. The proportions reported reflect the estimated 

admixture contribution resulting from a migration pulse from one source to one sink population. 

(B) Residuals to fit for the best population graphs obtained assuming K=0 to K=5 migration 

edges. (C) Model likelihood (top) and fraction of variance explained (bottom, between square 

brackets) for models including M=0 to M=5 migration edges. 

  



 

 

 

 

 

Fig. S17. Carbon isotopes. Time-series (years B.P.) of stable carbon isotope values in collagen 

of megafauna across different regions (table S2), including (A) Beringia; (B) Europe; (C) 

Siberia; (D) Continental North America, and; (E) temperature record in Greenland (51). The 

curves represent the average of a 10 points sliding-window. 

  



 

 

 

 

 

Fig. S18. Nitrogen isotopes. Time-series (years B.P.) of stable nitrogen isotope values in 

collagen of megafauna across different regions (table S2), including (A) Beringia; (B) Europe; 

(C) Siberia; (D) Continental North America, and; (E) temperature record in Greenland (51). The 

curves represent the average of a 10 points sliding-window. 

  



Table S1. Sample information. 

The table includes details (including locality information, stable isotope/C and N isotope data 

and radiocarbon dates) for all specimens (both previously published and those analyzed here for 

the first time). Labels refer to population groups showing genetic homogeneity, with reference to 

previous work. Sample names refer to a unique identifier, followed by a 3-letters country code 

and the age, either in calibrated years B.P. (Before Present) (or calendar years (B)CE ((Before) 

Common Era; the 'm' prefix indicating BCE, for consistency with previous publication). 

Information about the ancient DNA data generated at CAGT and UCSC is provided, including 

the number of independent DNA libraries constructed, respective sequencing efforts, final 

mitogenome and EquCab3 nuclear genome coverage, and estimated error rates. The biological 

sex of each specimen was inferred from the ratio of high-quality unique reads aligned on the X 

chromosome and the autosome, accounting for the chromosome size difference. The table then 

provides the results from a number of analyses presented in the main text, including 

ADMIXTURE (29) profiles (K=2 to K=4, with respective uncertainties in ancestry component 

estimates), F4 ratios (30) considering various conformations (((A,B),X,C),Outgroup), and Struct-

f4 (31) profiles (K=2 to K=10). 

Table S2. Carbon and nitrogen isotope compilation of late Pleistocene megafauna. 

Compilation of radiocarbon dated samples with bone collagen carbon and nitrogen isotope data 

from the northern hemisphere. Metadata includes sample location (locality, region, latitude and 

longitude), detailed radiocarbon and isotope analysis metadata (i.e. collagen yield, δ13Ccollagen, 

δ15Ncollagen), and biological information (species, diet, analytical matrix). References for the 

compilation are given in the database and in the Supplementary Information. 
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